Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 11573, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123044

RESUMO

Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.


Assuntos
Scrapie/patologia , Animais , Bovinos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Macaca fascicularis , Masculino , Camundongos , Príons/metabolismo , Scrapie/transmissão , Lobo Temporal/patologia , Fatores de Tempo
2.
Transfusion ; 55(6): 1231-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25647476

RESUMO

BACKGROUND: Analysis of archived appendix samples reveals that one in 2000 individuals in the United Kingdom may carry the infectious prion protein associated with variant Creutzfeldt-Jakob disease (vCJD), raising questions about the risk of transfusion transmission from apparently healthy carriers. Blood leukoreduction shows limited efficiency against prions. Therefore, in absence of antemortem diagnostic tests, prion removal filters, including the P-Capt filter were designed to improve blood transfusion safety. STUDY DESIGN AND METHODS: We evaluated the performances of two filters, the P-Capt and one prototype (PMC#005), with blood-borne infectivity in two independent experiments. Blood was drawn twice from prion-infected macaques. Corresponding RBCCs were prepared according to two different procedures: in Study A, the leukoreduction step was followed by the filtration through the P-Capt. In Study B, the leukoreduction and prion removal were performed simultaneously through the PMC#005. For each study, two groups of three animals were transfused twice with samples before or after filtration. RESULTS: Among the six macaques transfused with nonfiltered samples, five developed neurologic signs but only four exhibited peripheral detectable protease-resistant prion protein (PrPres) accumulation. In Study A, the three animals transfused with P-Capt-filtered samples remain asymptomatic and devoid of PrPres in lymph node biopsies 6 years after the transfusion. In Study B, one animal transfused with PMC#005-filtered samples developed vCJD. CONCLUSION: After 5 to 6 years of progress, this ongoing study provides encouraging results on the prion blood removal performances of the P-Capt filter in macaques, an utmost relevant model for human prion diseases.


Assuntos
Transfusão de Componentes Sanguíneos/efeitos adversos , Segurança do Sangue/instrumentação , Patógenos Transmitidos pelo Sangue/isolamento & purificação , Síndrome de Creutzfeldt-Jakob/prevenção & controle , Encefalopatia Espongiforme Bovina/prevenção & controle , Procedimentos de Redução de Leucócitos/instrumentação , Príons/isolamento & purificação , Ultrafiltração/instrumentação , Adsorção , Animais , Segurança do Sangue/métodos , Química Encefálica , Bovinos , Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/transmissão , Encefalopatia Espongiforme Bovina/sangue , Encefalopatia Espongiforme Bovina/transmissão , Macaca fascicularis , Masculino , Filtros Microporos , Microesferas , Príons/análise , Príons/toxicidade , Resinas Sintéticas , Medula Espinal/química , Baço/química
3.
Pathogens ; 2(3): 520-32, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25437205

RESUMO

Successful transmission of Transmissible Mink Encephalopathy (TME) to cattle supports the bovine hypothesis for the still controversial origin of TME outbreaks. Human and primate susceptibility to classical Bovine Spongiform Encephalopathy (c-BSE) and the transmissibility of L-type BSE to macaques indicate a low cattle-to-primate species barrier. We therefore evaluated the zoonotic potential of cattle-adapted TME. In less than two years, this strain induced in cynomolgus macaques a neurological disease similar to L-BSE but distinct from c-BSE. TME derived from another donor species (raccoon) induced a similar disease with even shorter incubation periods. L-BSE and cattle-adapted TME were also transmissible to transgenic mice expressing human prion protein (PrP). Secondary transmissions to transgenic mice expressing bovine PrP maintained the features of the three tested bovine strains (cattle TME, c-BSE and L-BSE) regardless of intermediate host. Thus, TME is the third animal prion strain transmissible to both macaques and humanized transgenic mice, suggesting zoonotic potentials that should be considered in the risk analysis of animal prion diseases for human health. Moreover, the similarities between TME and L-BSE are highly suggestive of a link between these strains, and therefore the possible presence of L-BSE for many decades prior to its identification in USA and Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...